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INTRODUCTION

A progress report on two aspects of theoretical research on
improved understanding and reduction of wind tunnel wall 'inter- |
ference is given. In part I, the compliant wall concept is
studied for steady, two-dimensional supersonic flow. The com-
pliant wall is modeled as a hinged plate with a torsional spring
restraint. The combinations of flow dynamic pressure, wall

geometry, and wall compliance which lead to minimum wall inter-

ference with the flow over a lifting airfoil are identified. 1In
part II, an improved theoretical model for flow over and through

a slotted wall is constructed. The theoretical relationship
which is obtained between pressure differential across the slot
and mass flow through the slot shows both the linear and quadratic
regimes observed in experiments. Qualitative agreement with

existing experimental data is very encouraging.




PART I
A COMPLIANT WALL, SUPERSONIC WIND TUNNEL*

E. H. Dowell E

Princeton University

*This work was sponsored by the Air Force Office of Scientific
Research Grant No.77-3337.




ABSTRACT

The concept of a compliant wall wind tunnel, whose

wall deforms in response to aerodynamic loading, is studied

theoretically. It is argued that such walls have advan-

tages for the design of wind tunnels with minimun wall

interference.
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LIST OF SYMBOLS

see equation (17)
see equation (25)
wind tunnel height
airfoil chord

see equation (23)

torsional spring stiffness
aerodynamic moment about hinge
free stream Mach number
see equation (17)
aerodynamic pressure
Laplace transform variable
see equation (17)

see eguation (25)

free stream velocity
downwash

streamwise coordinate

transverse cordinate

angle of attack
2 - 1l/?

o, U2 (8b)?/8K

wall deflection
velocity potential

free steam density

compliant wall rotation
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00 -~ compliant wall rotation corresponding to zero

spring twist or A = 0 . Z;
A0 el |
Superscripts
* ~ Laplace transform
TE - trailing edge
21 - zero interference
~ - renormalization by multiplying or dividing by

C .

/gb

Subscript

D - divergence
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INTRODUCTION

The self-correcting wind tunnel has attracted con- =
siderable interest in recent years as a concept for
achieving minimum wall interference in a wind tunnel.
Sears, et. al.l, have presented an authoritative account
which is recommended to the reader. Among their important

conclusions is that a perforated wind tunnel wall (with con-

trol of the pressures in subdivided plenum chambers) is
superior to control of impermeable, flexible walls such as
suggested by Chovallier2 and Goodyor3. In Ref. 2 and 3 and
the discussion in Ref.l it is assumed that the impcrme-
able, flexible wall is deformed into an apriori determined
shape of fixed magnitude. The selection of wall shape func-
tion and its magnitude is made so as to minimize wind
tunnel wall interference. 1In the present paper this con-
cept is broadened to allow at least the magnitude of the
wall shape to vary with flow conditions, e.g. flow dynamic
pressure. More generally the shape function might vary as well.
As will be shown there are advantages to such a compliant
wall concept.

For simplicity we consider two-dimensional, supersonic

flow in the context of small perturbation theory. The

compliant wall is modeled as rigid hinged segments whose
compliance is determined by attached springs. As the reader
will appreciate the basic concept allows for a much wider
range of flow regimes and compliant wall characteristics 'H
at the cost of some increased complexity in mathematics and,

ultimately, experimental implementation.

T T TN ————— Y > 'i
s - *——



ANALYSIS

The fluid equation of motion for two-dimensional,

small perturbation, potential flow is

2 .
8 0, = ¥ = O (1)

where g = (M2 - 1)1/2

o

The boundary condition on the airfoil is

(2)

i
z

¢

Zlz=0

where w is the airfoil downwash. For an airfoil at
steady angle of attack, a, w = - U a. The boundary con-

dition on the wind tunnel wall is

L - He (3)

z=b/2
where b is the wind tunnel height and n the deflec-
tion shape of the wind tunnel wall.

To solve (1), subject to (2) and (5), a Laplace
Transform with respect to x is used.* Solving the re-
sulting ordinary differential equation in 2z and using
the tranformed boundary conditions gives for the La-
place transform of the velocity potential, ¢,

w*‘ s Rb/ * *

o s [g € 2 L R wh

2=0 8 » (4)
s 8b/, _ =S Bb/,

(3]

*following Miles, Ref. d.

n---iﬁu.---i-------------nuum;c;
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and
N 3 R
o* = [—¥~ eshb/2 + U _n*lcoth SLP
RS o 2
i z=b/2
i!
* y
2 o8 By |
Bs 3 / = ; )
[e26D/y _o~86B/,) (5)
Our primary interest is in the fluid pressure, p, which *
is determined from Bernoulli's equation. 1
Sk P Y (6)
To facilitate the inversions of (4) and (5) and sub-
, sequently determine p from (6), the following identi-
k ties are used.
X
‘ Al
|
{ i Bk 7 W — y
| 1 » Stb,2 ¥ = nsikb 7
| =0
{ 3 - ] // n
| e¥8b/ g o RPN/,
coth sfb/, = 1 + 21 e NSfP (8)
1 n=1
Using these i1dentities and standard inversion
formulae, the following results are obtained.
2 w(x) + 2 % : R ]
P o - p U, (- 3 3  n=1 (- W(x-n gb) ;
+ Un,(x= Bb =(n-1)Rb) ]} (9)
2
i
! - :




- oM I w(x+8-g- - ngb) .
z=b/2 — n=l

- p U 2 [n_(x)+2 & n., (x-nBb)] (10)
e » n=1 =X

B

We shall! use (10) subseguently; first we turn our attention
to (9). The first term in (9) is the value of p if there
were no wind tunnel wall (interference); the second term
(first summation) is the effect of a rigid horizontal wall;
the third term (second summation) is the effect of the wind
tunnel wall deflection shape with respect to the horizontal
reference line. For zero wall interference we choose n
such that the second and third terms cancel.*

Thus p

ne (x) = § (x-8b/,) (1)

One way of satisfying (11) is to have a rigid but moveable
wall (perhaps composed of hinged segments) which can be
controlled perfectly to obtain an appropriate n. This is essen-
tially the concept of Chevallier2 and Goodyer3. However, any
practical moveable walls will have some compliance or flexi-
bility; moreover as we shall show there may be some advantages
to constructing a deliberately compliant wall.
SINGLE SEGMENT WITH HINGE AT LEADING EDGE:

For definiteness, we consider a zero thickness airfoil
Note there is no wall interference if c<fb since then the second

and third terms are identically zero. Physically the waves reflected
by the wall do not strike the airfoil.

8
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at constant angle of attack, a, and a compliant wall con-

A A, 5e A e

sisting of a single rigid segment hinged at its leading edge.

The compliance 1is due to an elastic torsional spring as
shown in Fig. 2. 1t is assumed the leading edge of the wall
segment begins at x = Bb/z; in practice this might require a
sliding leading edge to accomodate changing B8 or a multi-
segment wall, each segment of which can be locked out or in
as neceded. The wall segment has its trailing edge at x =

c + Bb/z.

The wall angle for zero spring stretching is 00; the

spring twist angle is A0. Thus the total wall segment angle,

0, is given by
8 =68_+ A8 (12)

For the geometry in question,

\

w==U_ 0o for 0 < x < ¢
n,.=-2=90 for Rb< x < fb + ¢ (13)
5 ks ..2_ _2~_

The equation of equilibrium for wall segment is
M+ K (06 - 00) =0 (14)

where K is the torsional spring constant and M the aerody-

namic moment about the hinge point (positive in the direction ;

of rotating the segment to close). M is given by \
L |
M =[ p (x=Bb/,)dx (15) [ 4

Bb/2 z=b/,

Substitution of (13) into (10) and the result into (15)

I gives




X 2 mewz (gb)z, is an aeroelastic coefficient,

where
B K :
N-1 .
AN = > n(2n-1)
n=1 2 ]
Lelilim = i
+ N (Bb (N-1)]
c - (N-1) 5.
[B‘S—‘ + (N 1)] ’
2
is an aerodynamic coefficient, and
T, = ?-1 (2n-1)°
N sl 2
Cc
+ (2N-1) [Eb - (N-1)]
[ 2]
. [-é-b_'; (N~-1) +(N-1)] ,

2
is an aerodynamic coefficient, where the integer, N, is determined by

(N-1) < %B < N (17)

Substitution of (16) into (14) and solving for 0 gives

g o BB Ay 8, ] (18)
a — ——
TN

1 + XTN

Q




HINGE AT TRAILING EDGE: i
A similar calculation for the wall segment hinged at

its trailing edge rather than its leading edge gives

TE TE
gl o Wi b A
« a TTE (19)
N
A AT'I‘b.
N

Note that aeroelastic divergence occurs, 0/“ + o, when

i TE
= = 1 /m i
A=A / T

CONDITIONS FOR ZERO WALL INTERFERENCE:

From (11) and (13), for zero wall interference we require

(/)% =1 (20)

Using (20) and (18) or (19), the aeroelastic coefficient at

: ‘ 21
which zero wall interference occurs, \“", may be computed as

\

31, (o~ 1

A o7 p ] for hinge at the leading edge (21)
= By
or AZI=1—0 o oy .
o/, for hinge at the trailing edge (22)
TE TE
W " A

Since N1 must be positive to be physically meaningful (and

TE 3
as we shall sce TN - AN>0 and TN - A:E > 0), then we require that
%o > 1 for a leading edge hinge
a
0 N .
or o N 1 for a trailing edge hinge
a

11
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in order to be able to achieve a condition of zero wall interference

: by increasing the non-dimensional dynamic pressure A, from 0 to XZI.

MULTIPLE WALL SEGMENTS:

Here we briefly indicate the generalization to multiple
wall segments which would be required for an airfoil with
arbitrary downwash. The basic concept is that each segment
has a certain angle which is maintained relative to those
of other segments by feedback control. 1In the limit of a
large number of segments, one may think of the wall having
a continuous variation. Hence the gencralization of (13)
is

we =T afix)

(23)

N o 0 f(x - Bg
where f is the shdpe of the airfoil (and wind tunnel wall).

Using (23) in (10),

= - pwUmz fa T f£({x+ Eg = ngb)
8
ey f(x-ag) - 20 ¢ f(xﬁg - ngb)) (24)

n=1

Using (24) in (15) again leads to an eqguation of the form

given by (16) with generalized definitions of AN and TN.




M e

‘‘‘‘‘

RESULTS

AERODYNAMIC COEFFICIENTS:

AN' TN' A:E, TNTE are solely functions of c¢/fb. They

are plotted in Fig.3. For convenience they are re-normalized

by defining

Ky = Ay/(c/8p) 2 (25)

etc.
For large c/Bb . XN' etc., are proportional to C/Bb' Hence
for large c/Bb or small Bb/c, Xn/%n approaches a constant,
namely .5. 1In Fig.4, the asymptotic behavior of the aero-
dynamic coefficients is shown.

AEROELASTIC COEFFICIENTS FOR ZERO WALL INTERFERENCE:

L with Eg for leading and

The variation ¥l (%b)z

trailing edge hinges is shown in Fig. 5. Also shown for re-

ference is *D = (%5)2 AD for a trailing edge hinge. Note
that to insure that X2Y < X, one requires 6_, > e
D o/ N/
Qa %TE
N

(+ .5 for E*—'c'i» 0).

WALL ROTATION VS AEROELASTIC COEFFICIENT:

In Fig.6, the wall rotation is shown as a function of

= . : LY -
}%N(“ ATN) for various eo/a. The asymptotic value AN/; .
N

"
D

is used. Recall equations (18) and (19). Note that O/a

at X = 0.

o/
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DISCUSSION AND CONCLUSIONS

First consider the rationale for a compliant wall wind
tunnel.
(1) Any movable wind tunnel wall will be inherently com-
pliant anyway, so that one must take this into account even
in the design of a nominally rigid wall.

(2) If one were to try to maintain 0/Ol = 1 for zero wall

4 interference by using a rigid wall, one would have to
measure 6 and a to insure that e/a = 1. However, for
a compliant wall, one may set 90/ appropriately at

a
A = 0 and then by controlling and measuring A insure

that 6/Ol = 1. This presumes the present aeroelastic

analysis is sufficiently accurate, of course. i

The principal conclusions from the present analysis
7 3 are \

; (3) The aerodynamic coefficients associated with the
compliant wall loading rapidly approach their asymp-
totic values for é% S oa

(4) The wall segment with a leading edge hinge is more
promising than one with a trailing edge hinge. The
latter is subject to aeroelastic divergence. Also the
compliant wall rotation varies more rapidly with the
aeroelastic coefficient about its optimum value for
zero wall interference for a trailing edge hinge.

Overall the compliant wall wind tunnel shows real promise

as a concept for reducing wind tunnel wall interference.

14




In closing, it should be noted, that, in principle, a

similar concept using a porous wall may be employed. This con-

L]

|
|
cept is briefly explored in the Appendix. The difficulty with ii
a porous wall is the basic uncertainty regarding its fluid |

mechanical beliavior. j
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AIRFOIL IN A WIND TUNNEL
FIG. |

SPRING WITH
TORSIONAL HINGE LINE
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LEADING EDGE MACH LINE

COMPLIANT WALL GEOMETRY
FIG. 2
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APPENDIX
Porous Wall Wind Tunnel 5
The field equation is
B2 4. -4 =0 (A-1)
XX 2Z

The boundary condition on the airfoil is

¢z = w (A-2)

where w 1is the airfoil downwash. The traditional

boundary condition on the porous wind tunnel wall is ®

ap¢z z=b/2+pmum ¢y z=b/2_ 0 (A-3)
where b is the wind tunnel height and Kp characterizes po-
rosity of the wind tunnel wall.

Again using a Laplace Transform with respect to x,
solving the resulting ordinanry differential equation in
z and using the transformed boundary conditions gives for

the Laplace transform of the velocity potential, ¢*,

W - ¥ Iy &7PPP) 5 yMgTRERD (A-4)
z= n=0
where ]
y = [B ~ PaVwm)/[p4Polu) (A-5)
KP KP

Our primary interest is in the fluid pressure, p, which is

determined from Rernoulli's equation

P= < peUs ¥ (A-6)
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Using (A-4), (A-6) and =tandard inversion formulae, one

obtains
[+
P = Pl I ynw(x-an)
2=0 n=0
8
+ 5y ™D G (x-(n+1) b) (A-7)
n=0

By choosing y = 0, (A-7) reduces to

p U

© ®

B

wi(x) (A-8)

the well known Ackeret result corresponding to zero wall
interference.
From (A-5), y = 0 implies
21
Py = K (A-=9)

N T P

B
Thus by varying the wind tunnel density, for example, one
could ensure that (A-9) is satisfied and zcro wall inter-
ference is achieved. The crucial question is, to what
degree does (A-3) accurately describe the fluid mechanics
of a porous wall? It is this uncertainty regarding the
adequacy of (A-3) which makes the compliant wind tunnel
wall concept an attractive alternative.

The above result for a porous wall wind tunnel has

6

been discussed by Maeder and Wood °~ and was well known to

earlier workers on wind tunnel wall interference.

23
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PART II

A MODEL FOR THE FLOW THROUGH SLOTS IN WIND

TUNNEL WALLS*

D.B. Bliss

Princeton University

*This work was sponsored by the Air Force Office of Scientific

Research, Grant No. 77-3337.




A Model for the Flow through Slots in Wind Tunnel Walls

Donald B. Bliss, Princeton University

Introduction

Ventilated walls are used in the test sections of transonic wind
tunnels in order to reduce blockage effects., In some designs, flow is allowed
to leave or enter the test section through slender slots parallel to the flow
which are distributed along the test section walls, The size, number, aspect
ratio and other geometric properties of the slots may vary considerably for
different tunnels, In order to include wind tunnel wall interference effects
in transonic flow calculations the effect of the slots on the wall boundary
condition must be included. A first step in this direction is to understand
the flow ficeld in the vicinity of a single slot,

The type of slot to be considered is illustrated in Figure 1, where
the flow is shown leaving the test section., An experimental plot of pressure
difference across a slot in uniform flow as a function of the mean velocity
through the slot, suitably nondimensionalized, is shown in Fig. 2 (Goethert,
1967). When the mean velocity is small the behavior is linecar, whercas
when tnhe mean velocity is large the behavior is more nearly quadratic., 1f
the slot were subjected to a nonuniform flow over its length the behavior
of the curve would be altered in a way related to the streamline curvature,
The fact that the data for different Mach numbers collapses well onto a
single curve suggests that the behavior of the slot is dominated by the sub-
sonic cross-flow (y-2 plane) and indicates that the slot can be analy:zed
using slender-body theory,

Numerous investigators have studiod the flow through slots

analytically and experimentally (Goethert, 1961; Berndt 1975, 1977). There




is general agreement that the quadratic behavior seen at higher values of

mean slot velocity in Fig. 2 is associated with the head loss as the cross-
flow separates at some point in its passage through the slot. The dependence
of pressure drop on the square of velocity is the same as that encountered
for a jet or an orifice flow. Perhaps surprisingly, the linear behavior
that occurs when the mean slot velocity is small has not been properly
explained, Attempts have been made to ascribe the linear region to a viscous
effect in the vicinity of the slot. This explanation appears to be incorrect;
in fact the effect of viscosity is probably to contribute another quadratic
term. Another possibility is that the linear term is related to an inter-
action of the flow with the trailing edge of the slot, For instance, a
blunt trailing edge would cause a flow deflection not unlike that produced
by the holes in a perforated wall which are known to have a linear character-
istic. However, if this were the mechanism, the slope of the linear region
would probably be dependent on Mach number. Also, both sharp and blunt
edged slots are known to exhibit linear behavior at low mean slot velocities,
In the analysis that follows, the linear behavior is shown to be
a consequence of the correct application of slender body theory to this
problem. Physically, the linear behavior is associated with the region
downstream of the leading edge where the free surface flow is beginning to
form but has not reached its final cross-flow configuration as an orifice or
jet flow., If the mean flow through the slot is small, the cross-flow never
reaches its fully developed state and the linear term dominates. When the
mean flow is large most of the cross-flow resembles a fully developed jet or
orifice flow and the quadratic term dominates. The somewhat analogous situation

in classical slender body theory is that 1lift forces arise only from regions

T > |



in which the cross-flow experiences a streamwise rate of change, e.g. only

from regions of the body where the cross-sectional area is changing.
In addition to showing how the linear behavior arises, the analysis
also shows how to collapse the data in order to compare the features of

slots of different aspect ratios.

Formulation

For reasons of simplicity only, the discussion is restricted to
incompressible flow. Assume that the fluid is inviscid and irrotational,

then the flow is governed by Laplaces equation
5 i Pe ‘L 1y
where P (x,y,z) is the velocity potential such that the velocity vector is

given by »
®

<J$

The configuration of the slot and the coordinate system are as shown in Fig,
1. The slot is assumed to lie in an infinite plane below a uniform free
stream,

The problem will be formulated in terms of the method of matched

asymptotic expansions. The velocity potential can be expressed as

P =Upx + q@{‘z?’

Where <P is a nondimensional perturbation velocity potential, Notice that
when there is no pressure difference across the plane containing the slot,

AP =0 , then the effect of the slot vanishes., The inner length

scale is defined to be the slot width a, The relevant small parameter for

the problem is € = Y %E . (l_ =Z"{00£az

™~




which is a measure of the flow deflection angle in the slot, Then the outer
length scale is defined to be qu/e . Notice that the outer length
scale is not the slot length,ﬂ_, which is not really the appropriate scale
for variations in the streamwise direction, In fact, this procedure could
be used to solve the problem of a semi-infinite slot in which there is no
possibility of using slot length as an outer length scale.

The following nondimensionalization is used for the variables:

$ = LUE
= Uooﬁ*

k= Lt y= by, =12t

This leads to a non-dimensional outer expansion of the form:
,* * 1.({)1* w4 S
g= X"+ Py 20+

Substituting into Laplacé% equation gives

«
GZCV + & ‘P 'Y =0
o 95' M
The inner variables are defined by a stretching of the cross-flow

coordinates
* o+
- e Z
y=Ye |, 7= /e

(note that y = y/a, z = z/a)

Then assume an inner expansion of the form .

T=+ EP* q Z)
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Substituting into Laplaces equation gives, to lowest order

which shows that the inner region behaves as a two dimensional potential flow

in the cross flow plane., Solutions must be of the form

——— a—— * Ty

Q- (t)(x,V,Z)—r—g(xt)

The boundary conditions for the problem are that

- 2

VP9 >0 as /odaoo,u_,w P fX‘+\j’+z’
oY
o7

=0 on the rigid wall
Z=0

P = conshant = pyon the free surface i the slot-

The first and second of these conditions are applied to the outer velocity
potential @Yxfyfz‘) , whereas the second and third conditions are applied
to the inner velocity potential (‘f(KT(J’g) . Any indeterminancy that
remains after the application of the appropriate boundary conditions to each
solution is resolved when the solutions are matched. For the outer solution,
to the present order of expansion, the slot appears as a line of sinks dis-
tributed along the x-axis. The strength of this distribution is determined
by matching with the inner solution, as is usual with slender body theory.
The boundary conditions for the inner solution require closer examination.

Bernoulli's equation in dimensional form is

b3l CF (32 + (38 == s o

.




After nondimensionalizing, re-expressing in inner variables, and setting

P = pg this equation becomes

¥ =k
(\ €5 ﬂ e \
Retaining only the lowest order terms gives

izaxw +( j) (%{)1 Zﬁ[((;) |

This is the condition that the free surface be at constant pressure. The

unknown position of the free surface expressed in inner variables is

1 [y% T | i
- 1 ) RIS { 4L
Z(X)j b) 2"%"*2
The solution must also satisfy the condition that the flow be tangent to

the free-surface at the free-surface location, If the free surface is des-

cribed by

Blxy,2) = BU g2 2)=0
then in dimensional coordinates the flow tangency condition is
VB-3 - VB8-VE =0
Re-expressed in inner variables this becomes

o303
%

v‘

2

3_5_:-9. .\_ ,0
1) o) e‘ TS

é’nl@,
?Cdom

|

Letting B '-72-"7()(75) , and using the expansion for ¥ gives

il 9-— 1 i P
,c,-:é.(li—e%) 0503 +1 —1) =0




Retaining the lowest order terms gives the flow tangency condition in inner

variables

Al Q’IQS?'__Q‘E} X .
S_axﬁa'gag 5 4. 70 st

Solutions and Matching

The general free surface problem in the slot would be extremely
difficult to solve. Therefore this section is restricted to general comments
on the solution structure and on the matching procedure. As stated before

the inner solution must have the form
- AT 3 +
¢ = ?J()(,y,z) +7(¥)
As is usual for slender body theory, far from the slot the velocity potential

¢({Tﬁ,g) will look like a simple source or sink whose strength is related

to the rate of change of cross-sectional area of the flow in the slot.
710, - -
Pe-slnr +qx*)=¢
™
-~ c2 =2 o
Where r:h + 2 and @ is the outer limit of the inner solution., Thus

:F_(X‘) = S"(,(*) , where .

+2

Slet) = jvz' (x] y‘)dg'
=%

equals the cross-sectional area occupied by the flow in the slot (dimen-

sionally S =Qz§ ).

N




The outer solution can be expressed as an integral of a source-

sink distribution over the slot

f Nx*)dx\,__
“am HPeRe)
where |*- 1/{ is the nondimensional slot length Lt
This integral can be shown to have the following form when "= %*‘+ ™
is small (see Ashley and Landahl, 1965) *
. )-F 1)
(Pi'____{} (Xﬁ)fmrt ‘F‘tx)/\“ l_:.._ + —XJ) P\( dx‘
ek (v TS

Re-expressing the outer solution in inner variables and using the expression

for small r* gives the inner limit of the outer solution,

¢ U’Q 4 TR R Hx 19
Y =" T - 1“41('(1'«\(‘) 27 x“z i il

Here L']C' is treated as an (?[1] quantity, as is sometimes done in slender-

body theory. Alternatively, this problem can be treated more formally by a

modification of the expansion procedure, but the results would be the same,

The matching procedure requires that the inner limit of the outer
solution equal the outer limit ofthe inner solution:cp“:¢ . The match-
ing shows that

ol

= {()

2

and then

S_(fl e f Stey) - NI it !

YY) =2 A T 2T et

Now the problem for flow in the inner region can be restated. The

velocity potential is of the form

e e — e ————
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where

Far from the slot Ef) —?-S—%ﬁnf: a) F 200,

In the slot the constant pressure boundary condition becomes

[ +()+(Y]) = 1-29)
Z -—'7[(:(7«3)

The flow tangency condition is

V.?Zﬁa'_’l’el-eij =0 | -paysh
N* 0 9y 02 éwilej‘) '

These equations constitute the final form of the inner problem. In addition,
depending on the assumed shape of the free surface, other conditions may be
required at the slot edges. For instance, the sides of a sharp edged slot
may require a Kutta condition., The difficulty in solving the problem as
posed above is that both the free surface shape and the velocity potential

are unknown. Certain limiting cases are solved below,

Slot Flow for Small Free Surface Displacements

§ x Q
The nondimensional slot length 1S 1 =€§ . When €<‘1’ then

LV L.
£
X '1 N 1 Under these conditions, since € measures the flow deflec-

tion angle in the slot, the free surface displacement is sufficiently small




that the pressure boundary condition can be applied on Z = 0, Assume that

the quadratic terms in the pressure boundary condition can be neglected
b Qﬁ_l =L _g'ly®)  -$<gs +4
they are of order )i thus =5 - <ded L 4

The following function will satisfy this simplified pressure boundary condition:

xt‘JIgj (-— -9 (x4 + C) $(3,2)

where
a)ﬁ'_ + 21.1 :()
ag’ J2

and

c{).oc e o) F - g Lt

C= m‘ash‘unj constt

The free surface shape in the slot is

Thyg) = f«!ldx f(" 9«)c %'

The cross-sectional area is

S(e*) = j 10¢'9)dy f qu}+c f —f(o j)dj}ku*

zw
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where w is a constant of order unity (to be discussed later). Differentiating

and substituting for g(x*) yields

-—'_—-§(x“)-_ +C % __Sﬂf) S(x.) S(x.)dx
o 4*'(1 x*) ~ow L= x|

This integral equation must be solved for S'(x*). The presence of the

arbitrary constant C, should allow the application of a Kutta condition at
the front of the slot, namely S'(0) =

Now that the equation has been formulated, it is convenient to change to

a new dimensionless variable & = x/%, so that

*

"= el

pl&

Then
) S(x)dl" = 5 2%&
and the integral equation becomes
T\ = 1) A g‘m e g
%\fﬂl@a&e W)S(?) :.—(e%) L%—\-C,)-—é—‘;r-jm[x (%) ___ s.(“»\mdi\

A . - . . .
where C1 is a redefinition of the arbitrary constant.
The velocity potential which satisfies the boundary conditions on the

crossflow is given by

PG 2)= ‘K’e{+ iz ml-23+fir @] - l}
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where SZi-&Lg is a complex quantity. This velocity potential is asso-
ciated with the potential flow through a slit; the velocity field exhibits

a square-root singularity at the side edges. A brief calculation gives
+%

w= ] Bopy - The
The integral equation now becomes
A E -1 a 2 LSS _¥a s
-,:;(E\\%%)’S'(Q):(eg) (-’-(5+C.)— -?—,%)ﬂm[xh—i)] - zlq'rf ———————H\gi ?S‘“ dy,

Clearly, from the form of this integral equation, the solution must

have the form
SQ) = (e 4) 4 & m8Y)
X=\ R x=1 and @SR)= Sx).

Recall the dimensional relationships:

Thus

—_— Q_() L
sw=etd0, m¥) = /o)
where G_:A% and the function G is defined by the above expression.
The volume flow rate from the slot is, to lowest order,
Q=UpS =wnal
where Wiy is the mean velocity through the slot. Substituting the above

expression for S gives

w41 ot

=w,al
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or

Ap_ o Wy
¢ )T

This shows a linear relationship between the pressure difference across the

slot and the mean velocity through the slot. Recall that this relationship
will hold only for €:<‘~%Q , i.e, only for small free surface displacements.
The relationship between pressure difference and mean slot velocity can also

be written as
ap Wy |
9 o &/ \Uwa
2 3 4 P A 3 Wy ( : )
Again, this lincar relationship holds only for { 2 2 ]{«] , which corres-
Uw A
ponds physically to small free surface displacements compared to the slot

width.

The slope of the pressure difference versus velocity curve is

2 60

The quantity a/f is the aspect ratio of the slot. Its appearance is analogous
to the familiar result in slender wing thecory that the lift curve slope is
proportional to the aspect ratio. The fact that the argument of the function
G is logarthmic suggests that its dependence on slot aspect ratio may be
relatively weak. The integral equation must be solved to determine the func-
tion GUMS.!)
[

In order to estimate the type of results given by this analysis, an

approximate solution to the integral equation is now obtained. For very small

aspect ratio, 0/1 , the term involving §'(2) which has the coefficient lﬂ%g

will dominate. Then the equation is approximately




Physically, this equation balances the acceleration of fluid near the slot and

the applied pressure difterence AP ; the effect of the source-sink distribu-

tion on the pressure distribution in the slot is neglected. (Actually this

approximation is not formally consistent since it was previously assumed that
€<« «/1 and fw€=’0‘ll| in the derivation of the equation,) Setting
6.:0 , SO that §'(()):0 , pives

' T X
S@=(ed) 3 u
‘\'(’
Integrating gives a2
- o
SK) = (G}m) 4 st
o

from which

A

Sy =(el)Vm L. (el
S(n“(ed a,tuej\" "‘(G‘\) (a (,,l)

This result gives a function (:l which can be viewed as a first approximation

to the actual function G:
g\ 4 4 8¢
Q(W )T q (YN

As a refinement, the neglected terms can be included by approximating
. ~ * ~ . :
S(?) as a linear function, a form suggested by the approximate solution above,
One possibility is simply to use this approximate solution in the terms

previously neglected. Taking this approach and substituting into the integral

equation gives

) S0 = e ) (el w00 () 580

T
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After choosing C.‘-’- /4],,19& to satisfy the Kutta condition, the equation

becomes

St)=(e )%‘L—fg[\ + h'% - }v'.% Bali0-31]

A

-
Although the expression for S;(i) is now singular at X=| , the function

is integrable. The result is

Thus the function G, which is the second approximation for G is

14
()= ek (a7

For a slot of aspect ratio dyk =0, , the resulting values of G1 and

62 are
(‘y‘:.-*S'.(, aMJ 61:4‘-0
The corresponding relationship between pressure difference and mass flow rate

are

A —, W A W,

T =056 awd Pl -040F

] UM 2 ‘ U-M
These numbers are considered to be in qualitative agreement with the avail-

able experimental data (e.g. see Fig. 2).where the slope of the pressure versus
flow rate curve seems to fall in the range of less than 0.5 to greater than
unity (Goethert, 1961). Aside from the approximate nature of the solution
presented here, there are several other factors which could affect the accuracy

of the calculation. The presence of a wall boundary layer and a shear layer

in the slot could substantially lower the magnitude of the velocity in the slot.
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Since transonic tunnel speeds are of primary interest, the effect of com-
pressibility must also be considered. All of these effects are believed to
act to increase the slope of the pressure drop versus flow rate curve, Regard-
less of these refinements, the analysis demonstrates that there is a (pre-
viously unrecognized) mechanism for linear behavior of this curve within the

framework of an inviscid slender body theory analysis.,

Fully Developed Flow Through the Slot

When %‘\*C“ 1 the cross-flow in the slot will closely resemble
a fully developed jet or orifice flow (depending on the slot cross-sectional
geometry). In this section, the problem formulation presented previously is
shown to be consistent with this picture of the flow field. In this case
1":@%)) 1 . Away from the ends of the slot the velocity potential
is expected to be independent of )(* to lowest order and S ’(X') ,QSZ’ .
the constant local flow rate through the slot. Under these conditions,
) ~ M=
gele 3 ﬁ” T r')
Completely neglecting the integral that appears in the exact expression for
%(X*) means that end effects are being ignored, Differentiating the

above gives
T oS kN )
91 = :r‘[ e 1 ¢

; . : |
This quantity is (ﬂ /1'] away from the ends of the slot and can be neglected
in the constant pressure boundary condition, The quantity a‘(}%} can also be
neglected by the (consistent) assumption that the velocity potential is

independent of x* to lowest order. Therefore, the pressure boundary condition

becomes

(G)+@] =0 g

2 1139) |




Thus, to good approximation, the velocity potential for the equivalent
steady two-dimensional free surface flow can be used, provided the changes
in free surface shape are confined to the region where the flow has become
essentially parallel and the pressure is nearly constant (= pg). This
situation is illustrated schematically in Figure 3 for the case of a sharp
edged slot,

To obtain the relationship- between pressure difference and flow
through the slot it is not necessary to consider the velocity potential in
any detail. Suppose that the final width of the jet leaving a slot of width
unity is ¢ . The precise value of 0’ depends on the slot geometry, but
typically g = 0.611 for a sharp edged slot, and0”= 1.0 for a thick slot
without internal separation. Applying the boundary condition to the cross
flow in the region downstream of the slot where the flow is almost parallel
gives

Lo
We =1

where bV§ is the final cross flow velocity downstream of the slot. Then

S04 =3, =% =¢

Integrating,

SG*) =™

A constant of integration that could be included in the above has been
omitted since end effects are being neglected. Set x*: {*. and re-express in

dimensional form

S(e%):r&f;al

%rrr _
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As before, the flow rate through the slot is

Q = anS :wmaﬁ

Hence

U A-E'QIOJ W’(Xl

or

F =%
U
For a sharp edge orifice W' =268 . This equation was used to generate
the "quadratic behavior" curve in Fig. 2 assuming a sharp edged orifice; note
that the agreement with the data is quite good.

Note that the above result can also be rewritten as

Ap 45\ _ 4 (w £\
(%Ra—i)b@n Voo“)

Since the equation for linear behavior could also be written in an analagous

form, it is suggested that all slender slot behavior can probably be expressed

Ap 17 _ p(wal
(! E‘) —_F(Uw“ )IME%

In fact this can be seen directly from the final statement of the inner pro-

as

blem. For the above form to hold, the cross-sectional shape of the slots
must be geometrically similar and there must be no boundary layer effects.
The parameter lmé may prove to have only a weak influence., It would be
most interesting to plot an appropriate set of experimental data in the form
(A_P_ i-z versus U L
¥ a’ T Q

and see to what extent it collapses onto a single curve.




a1 S A Wl e R PR e S e s S S il e et s

REFERENCES I

JRR— T

Ashley, H. and Landahl, M, T. (1965) Aerodynamics of Wings and Bodies,
Addison-Wesley, Reading, Mass.

Goethert, B. H. (1961) Transonic Wind Tunnel Testing, Pergamon Press.

Berndt, S. B. and Sorensen, H. (1975) "Flow Properties of Slotted Walls for
Transonic Test Sections" AGARD Conference Proceedings, No. 174, Paper No. 17.

Berndt, S. B. (1977) "Inviscid Theory of Wall Interference in Slotted Sec-
tions" AIAA Journal, Vol. 15, No. 9, pp. 1278-87.




FI6.1 FLOwW THROUGH A SLOT
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FIG.2 EXPERIMENTALLY DETERMINED CHARACTERISTICS OF A
SINGLE SLENDER SLOT (GOETHERT,1961)
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FIG.3 TLWSTRATION OF FREE SURFACE BEHAVIOR IN A
FULLY DEVELOPED SLOT CROSS-FLOW




